Module 3 Lesson 6 Exercises Answer Key

1. Since the reaction is first order, the rate changes by the same factor the concentration changes.

Reducing the concentration to one-half results in the rate reducing by one-half to $0.250 \mathrm{~mol} / \mathrm{L}$.

Reducing the concentration to one-fourth will reduce the rate to one-fourth, or $0.125 \mathrm{~mol} / \mathrm{Ls}$.
2. a) Since O_{2} is first order, $2 \times\left[\mathrm{O}_{2}\right]=2 \times$ rate
b) If the volume of the entire container is reduced to one-half, the concentration of all the reactants will double. Both reactants are first order so, $\left(2 \times\left[\mathrm{N}_{2} \mathrm{O}\right]\right) \times\left(2 \times\left[\mathrm{O}_{2}\right]\right)=4 \times$ rate

Another way to look at this is the total order of the reaction (sum of the exponents) is 2 so,
$2 \times$ [reactants] $=2^{2} \times$ rate $=4 \times$ rate
3. a) Since H_{2} is first order, $3 \times\left[\mathrm{O}_{2}\right]=3 \times$ rate
b) Since NO is second order, $2 \times[\mathrm{NO}]=2^{2} \times$ rate $=4 \times$ rate
c) If the volume of the entire container is reduced to one-half, the concentration of all the reactants will double.
$(2 \times[\mathrm{NO}])^{2} \times\left(2 \times\left[\mathrm{O}_{2}\right]\right)=2^{3} \times$ rate $=8 \times$ rate
Another way to look at this is the total order of the reaction (sum of the exponents) is 3 so,
$2 \times$ [reactants] $=2^{3} \times$ rate $=8 \times$ rate
4. From Trial $1 \& 2$, $[B]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{2}}{\text { Rate }_{1}} & =\frac{[\mathrm{A}]_{2}}{[\mathrm{~A}]_{1}} \\
\frac{1.5}{0.50} & =\left(\frac{3.0}{1.0}\right)^{\text {order }} \\
3 & =3^{\text {order }} \\
1 & =\text { order }
\end{aligned}
$$

From Trial 2 \& 3, [A] constant

$$
\begin{aligned}
\frac{\text { Rate }_{2}}{\text { Rate }_{1}} & =\frac{[\mathrm{B}]_{2}}{[\mathrm{~B}]_{1}} \\
\frac{3.0}{1.5} & =\left(\frac{2.0}{1.0}\right)^{\text {order }} \\
2 & =2^{\text {order }} \\
1 & =\text { order } \\
\text { rate } & =\mathrm{k}[\mathrm{~A}][\mathrm{B}] \\
\text { rate } & =\mathrm{k}[\mathrm{~A}][\mathrm{B}] \\
\mathrm{k} & =\frac{\text { rate }}{[\mathrm{A}][\mathrm{B}]} \\
& =\frac{0.50}{(1.0)(1.0)} \\
\mathrm{k} & =0.50
\end{aligned}
$$

5. From trials $1 \& 2,\left[\mathrm{OCl}^{-}\right]$constant

$$
\frac{\text { Rate }_{1}}{\text { Rate }_{2}}=\frac{\left[\mathrm{I}^{-}\right]_{1}}{\left[\mathrm{I}^{-}\right]_{2}}
$$

$$
\begin{aligned}
\frac{7.91 \times 10^{-2}}{3.95 \times 10^{-2}} & =\left(\frac{0.12}{0.060}\right)^{\text {order }} \\
2 & =2^{\text {order }} \\
1 & =\text { order }
\end{aligned}
$$

5. (con't) From Trials 2 \&4, [$\left.I^{-}\right]$constant

$$
\begin{gathered}
\frac{\text { Rate }_{2}}{\text { Rate }_{4}}=\frac{\left[\mathrm{OCl}^{-}\right]_{2}}{\left[\mathrm{OCl}^{-}\right]_{4}} \\
\frac{3.95 \times 10^{-2}}{1.98 \times 10^{-2}}=\left(\frac{0.18}{0.090}\right)^{\text {order }} \\
4=2^{\text {order }} \\
2=\text { order } \\
\text { rate }= \\
\begin{aligned}
\text { rate }\left[\mathrm{I}^{-}\right]\left[\mathrm{OCl}^{-}\right]^{2}
\end{aligned} \\
\begin{aligned}
\mathrm{k} & =\frac{\mathrm{k}\left[\mathrm{I}^{-}\right]\left[\mathrm{OCl}^{-}\right]^{2}}{\left[\mathrm{I}^{-}\right]\left[\mathrm{OCl}^{-}\right]^{2}} \\
& =\frac{7.91 \times 10^{-2}}{(0.12)(0.18)^{2}} \\
\mathrm{k} & =20.3
\end{aligned}
\end{gathered}
$$

6. Trials $1 \& 2,[B] \&[C]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{2}}{\text { Rate }_{1}} & =\frac{[\mathrm{A}]_{2}}{[\mathrm{~A}]_{1}} \\
\frac{1.40}{0.35} & =\left(\frac{2.0}{1.0}\right)^{\text {order }} \\
4 & =2^{\text {order }} \\
2 & =\text { order }
\end{aligned}
$$

Trials $2 \& 3,[A] \&[C]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{2}}{\text { Rate }_{3}} & =\frac{[B]_{2}}{[B]_{3}} \\
\frac{1.40}{1.40} & =\left(\frac{2.0}{1.0}\right)^{\text {order }} \\
1 & =2^{\text {order }} \\
0 & =\text { order }
\end{aligned}
$$

Trials $1 \& 4,[A] \&[B]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{4}}{\text { Rate }_{1}} & =\frac{[\mathrm{C}]_{4}}{[\mathrm{C}]_{1}} \\
\frac{0.70}{0.35} & =\left(\frac{1.0}{0.50}\right)^{\text {order }} \\
2 & =2^{\text {order }} \\
1 & =\text { order } \\
\text { rate } & =\mathrm{k}[\mathrm{~A}]^{2}[\mathrm{C}] \\
\text { rate } & =\mathrm{k}[\mathrm{~A}]^{2}[\mathrm{C}] \\
\mathrm{k} & =\frac{\text { rate }}{[\mathrm{A}]^{2}[\mathrm{C}]} \\
& =\frac{0.35}{(1.0)^{2}(0.50)} \\
\mathrm{k} & =0.70
\end{aligned}
$$

7. Trials $1 \& 2,[\mathrm{Y}] \&[\mathrm{Z}]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{2}}{\text { Rate }_{1}} & =\frac{[\mathrm{X}]_{2}}{[\mathrm{X}]_{1}} \\
\frac{5.94}{0.66} & =\left(\frac{1.35}{0.45}\right)^{\text {order }} \\
9 & =3^{\text {order }} \\
2 & =\text { order }
\end{aligned}
$$

Trials 1\&3, $[\mathrm{X}] \&[Z]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{3}}{\text { Rate }_{1}} & =[\mathrm{Y}]_{3} \\
\frac{1.98}{0.66} & =\left(\frac{0.60}{0.20}\right)^{\text {order }} \\
3 & =3^{\text {order }} \\
1 & =\text { order }
\end{aligned}
$$

7.(con't) Trials $3 \& 4,[\mathrm{X}] ⿷[Y]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{4}}{\text { Rate }_{3}} & =\frac{[\mathrm{Z}]_{4}}{[\mathrm{Z}]_{3}} \\
\frac{1.98}{1.98} & =\left(\frac{1.10}{0.55}\right)^{\text {order }} \\
1 & =2^{\text {order }} \\
0 & =\text { order } \\
\text { rate } & =\mathrm{k}[\mathrm{X}]^{2}[\mathrm{Y}] \\
\text { rate } & =\mathrm{k}[\mathrm{X}]^{2}[\mathrm{Y}] \\
\mathrm{k} & =\frac{\text { rate }}{[\mathrm{X}]^{2}[\mathrm{Y}]} \\
& =\frac{0.66}{(0.45)^{2}(0.20)} \\
\mathrm{k} & =16.3
\end{aligned}
$$

8. Trial 1\&2, $\left[I_{2}\right]$ constant

$$
\begin{aligned}
\frac{\text { Rate }_{1}}{\text { Rate }_{2}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{1}}{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]_{2}} \\
\frac{1.16 \times 10^{-7}}{5.79 \times 10^{-8}} & =\left(\frac{0.100}{0.0500}\right)^{\text {order }} \\
2 & =2^{\text {order }} \\
1 & =\text { order }
\end{aligned}
$$

Trial 2\&3, $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ constant

$$
\frac{\text { Rate }_{3}}{\text { Rate }_{2}}=\frac{\left[\mathrm{I}_{2}\right]_{3}}{\left[\mathrm{I}_{2}\right]_{2}}
$$

$$
\frac{5.77 \times 10^{-8}}{5.79 \times 10^{-8}}=\left(\frac{0.500}{0.100}\right)^{\text {order }}
$$

$$
1=5^{\text {order }}
$$

$$
0 \text { = order }
$$

rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$
8. b)

$$
\begin{aligned}
\text { rate } & =\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right] \\
\mathrm{k} & =\frac{\text { rate }}{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]} \\
& =\frac{1.16 \times 10^{-7}}{(0.100)} \\
\mathrm{k} & =1.16 \times 10^{-6}
\end{aligned}
$$

c) Since iodine is zero order we don't use it in our rate calculation.
rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]=\left(1.16 \times 10^{-6}\right)(0.0700 \mathrm{~mol} / \mathrm{L})=8.12 \times 10^{-8} \mathrm{~mol} / \mathrm{Ls}$
Check the data table and make sure the units are correct.
d)

$$
\begin{aligned}
\text { rate } & =\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right] \\
{\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right] } & =\frac{\text { rate }}{\mathrm{k}} \\
& =\frac{3.10 \times 10^{-8}}{1.16 \times 10^{-6}} \\
& =0.0267 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

9. Trial 1\&2, [A] constant

$$
\begin{aligned}
\frac{\text { Rate }_{1}}{\text { Rate }_{2}} & =\frac{[\mathrm{B}]_{1}}{[\mathrm{~B}]_{2}} \\
\frac{1.45 \times 10^{-4}}{7.25 \times 10^{-5}} & =\left(\frac{0.0240}{0.0120}\right)^{\text {order }} \\
2 & =2^{\text {order }} \\
1 & =\text { order }
\end{aligned}
$$

Using trials 2 \& 3 (you could also use trials 1 \& 3)
Since the concentration of B does not remain constant, we can choose any two trials but we must include the ratio of B concentrations.

We know that B is first order.

$$
\begin{aligned}
& \frac{\text { Rate }_{3}}{\text { Rate }_{2}}=\left(\frac{[\mathrm{A}]_{3}}{[\mathrm{~A}]_{2}}\right)^{\text {order }}\left(\frac{[\mathrm{B}]_{3}}{[\mathrm{~B}]_{2}}\right)^{\text {order }} \\
& \frac{5.80 \times 10^{-4}}{7.25 \times 10^{-5}}=\left(\frac{0.0200}{0.100}\right)^{\text {order }}\left(\frac{0.0480}{0.0120}\right)^{1} \\
& 8=2^{\text {order }} \times 4^{1} \\
& \frac{8}{4}=2^{\text {order }} \\
& 2=2^{\text {order }} \\
& 1=\text { order } \\
& \text { Rate }=k[\mathrm{~A}][\mathrm{B}]
\end{aligned}
$$

10. Trial $2 \& 3,[\mathrm{~A}]$ constant

$$
\frac{\text { Rate }_{2}}{\text { Rate }_{3}}=\frac{[\mathrm{B}]_{2}}{[\mathrm{~B}]_{3}}
$$

$$
\begin{aligned}
\frac{3.6 \times 10^{-2}}{9.0 \times 10^{-3}} & =\left(\frac{0.084}{0.021}\right)^{\text {order }} \\
4 & =4^{\text {order }} \\
1 & =\text { order }
\end{aligned}
$$

Using trials $1 \& 2$ (you could also use trials $1 \& 3$)
Since the concentration of B does not remain constant, we can choose any two trials but we must include the ratio of B concentrations.

We know that B is first order.

$$
\begin{aligned}
& \frac{\text { Rate }_{1}}{\text { Rate }_{2}}=\left(\frac{[\mathrm{A}]_{1}}{[\mathrm{~A}]_{2}}\right)^{\text {order }}\left(\frac{[\mathrm{B}]_{1}}{[\mathrm{~B}]_{2}}\right)^{\text {order }} \\
& \frac{3.6 \times 10^{-2}}{3.6 \times 10^{-2}}=\left(\frac{0.0012}{0.00060}\right)^{\text {order }}\left(\frac{0.042}{0.084}\right)^{1} \\
& 1=2^{\text {order }} \times 0.5^{1} \\
& \frac{1}{0.5}=2^{\text {order }} \\
& 2=2^{\text {order }} \\
& 1=\text { order } \\
& \text { Rate }=k[\mathrm{~A}][\mathrm{B}]
\end{aligned}
$$

11. a) Rate $=k\left[H_{2}\right]\left[I_{2}\right]$
b)

$$
\begin{aligned}
\text { rate } & =k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right] \\
\mathrm{k} & =\frac{\text { rate }}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& =\frac{1.0 \times 10^{-4}}{(0.025)(0.050)} \\
\mathrm{k} & =0.080
\end{aligned}
$$

c) Rate $=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{L}_{2}\right]=(0.080)(0.10)(0.10)=8.0 \times 10^{-4} \mathrm{~mol} / \mathrm{Lmin}$
d) $\left(2 x\left[H_{2}\right]\right)^{1}\left(0.5 \times\left[L_{2}\right]\right)^{1}=(2 \times 0.5) \times$ rate $=1 \times$ rate the rate is unchanged
12. For the one step reaction $\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})$
a) \quad Rate $=k[A][B]^{2}$
b) i) since A is first order, $2 \mathrm{x}[\mathrm{A}]=2 \times$ rate
ii) since B is second order, $3 \times[B]=3^{2} \times$ rate $=9 \times$ rate
iii) doubling the volume makes the concentrations of all reactants one-half. The total order is 3 .
$1 / 2 \times$ [reactants] $=(1 / 2)^{3} \times$ rate or $1 / 8 \times$ rate

